Quasi-Continuum Density Functional Theory

M. Ortiz
California Institute of Technology

In collaboration with: K. Bhattacharya (Caltech),
T. Blesgen (Leipzig), V. Gavini (UMich),
J. Knap (ARL), P. Suryanarayana (Caltech)

8th World Congress on Computational Mechanics Venezia, June 30, 2008

Introduction (QM2CM)

- Problems arising in the study of defective crystals are inherently multiscale
- Need to resolve simultaneously:
 - Electronic structure of defect cores
 - Long-ray
 conce Fundamental challenge: Quantum
- Typ(mechanical calculations at
 - Va macroscopic scales!
 - Dislocation
 - Domain walls: cell size ~ τ μm
 - Grain boundaries: cell size ~ 20 μm
- Physically relevant cell sizes are far larger than can be analyzed by conventional computational chemistry
- Need to coarse-grain quantum mechanics!

nents:

Orbital-Free Density Functional Theory

• Total energy functional: $E[\rho] = T_s[\rho] + E_{xc}[\rho]$

$$+\frac{1}{2}\int_{\Omega}\int_{\Omega}\frac{\rho(r)\rho(r')}{|r-r'|}drdr'+\int\rho(r)v(r)dr$$

Thomas-Fermi-Weizsacker (TF-λW) KE:

$$T_s(\rho) \approx \frac{3}{10} (3\pi^2)^{2/3} \int \rho^{5/3}(r) dr + \frac{\lambda}{8} \int \frac{|\nabla \rho(r)|^2}{\rho(r)} dr$$

Exchange-correlation energy (LDA):

$$E_{xc}[\rho] \approx \int \epsilon_c(\rho)\rho(r) dr - \frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int \rho^{4/3}(r) dr$$

Orbital-Free Density Functional Theory

Total energy functional:

pseudopotentials

OFDFT - Coarse-graining

- However, calculations are still expensive:
 - 9x9x9 cluster = 3730 atoms required 10,000 CPU hours!

Defective crystals – The bridge

Away from defects, atoms 'see' the electron density of a uniformly distorted periodic lattice:
 Cauchy-Born electron density + slowly varying modulation (Blanc, Le Bris and Lions, ARMA, 2002)

 Only near defect cores the electron density and the electrostatic potential deviate significantly from those
 of a periodic lattice

Defective crystals – The bridge

• Quasi-continuum: $m{R} o m{R}_h \in \mathbb{R}^{3N_h}, \ N_h \ll N$

Each element represents affinely deformed lattice

Localized correction to Cauchy-Born predictor:

QC/OFDFT convergence – Al vacancy

Convergence of multiscale scheme

Cell-size dependence – Al vacancy

Convergence with material sample size

Case study 1 – Di-vacancies in Al

Binding energy vs. material sample size

Case study 2 – Prismatic loops in Al

Prismatic dislocation loops formed by condensation of vacancies in quenched aluminum

Kulhmann-Wilsdorff and Kuhlmann,

J. Appl. Phys., 31 (1960) 516.

Prismatic dislocation loops formed by condensation of vacancies in quenched Al-05%Mg

Takamura and Greensfield,

J. Appl. Phys., 33 (1961) 247.

Prismatic dislocation loops also in irradiated materials

Loops smaller than 50 nm undetectable: Nucleation mechanism? Vacancy condensation?

Michael Ortiz
MMM2008

Case study 2 – Prismatic loops in Al

Quad-vacancy binding energy vs. material sample size

Case study 2 – Prismatic loops in Al

Non-collapsed configuration Binding energy = -0.88 eV

1/2<110> prismatic loop Binding energy = -1.57 eV

Stability of hepta-vacancy

Concluding remarks

- Behavior of material samples may change radically with size (concentration): Small samples may not be representative of bulk behavior
- Need electronic structure calculations at macroscopic scales: Quasi-continuum OFDFT (QC/OFDFT)
- Outlook: Application to general materials requires extension to Kohn-Sham DFT...

